ONLINE
2


Partilhe esta Página



Total de visitas: 1748
O Átomo
O Átomo

O Átomo

O Átomo

Átomo é uma unidade básica de matéria que consiste num núcleo central de carga elétrica positiva envolto por uma nuvem de eletrões de carga negativa. O núcleo atómico é composto por protões e neutrões (exceto no caso do hidrogénio-1, que é o único nuclídeo estável sem neutrões). Os eletrões de um átomo estão ligados ao núcleo por força eletromagnética. Da mesma forma, um grupo de átomos pode estar ligado entre si através de ligações químicas baseadas na mesma força, formando uma molécula. Um átomo que tenha o mesmo número de protões e eletrões é eletricamente neutro, enquanto que um com número diferente pode ter carga positiva ou negativa, sendo desta forma denominado ião. Os átomos são classificados de acordo com o número de protões no seu núcleo: o número de protões determina o elemento químico e o número de neutrões determina o isótopo desse elemento.

Os átomos são objetos minúsculos cujo diâmetro é de apenas algumas décimas de nanómetros e com pouca massa em relação ao seu volume. A sua observação só é possível com recurso a instrumentos apropriados, como o microscópio de corrente de tunelamento. Cerca de 99,94% da massa atómica está concentrada no núcleo, tendo os protões e neutrões aproximadamente a mesma massa. Cada elemento possui pelo menos um isótopo com nuclídeo instável que pode sofrer decaimento radioativo. Isto pode levar à ocorrência de uma transmutação que altere o número de protões ou neutrões no interior do núcleo. Os eletrões ligados a átomos possuem um conjunto estável de níveis energéticos, ou orbitais atómicas, podendo sofrer transições entre si ao absorver ou emitir fotões que correspondam à diferença de energia entre esses níveis. Os eletrões definem as propriedades químicas de um elemento e influenciam as propriedades magnéticas de um átomo. A mecânica quântica é a teoria que descreve corretamente a estrutura e as propriedades dos átomos. 

O modelo atômico de Thomson

O físico Joseph John Thomson descobriu os elétrons em 1897 por meio de experimentos envolvendo raios catódicos em tubos de crookes. O tubo de crookes consiste numa ampola que contém apenas vácuo e um dispositivo elétrico que faz os elétrons de qualquer material condutor saltar e formar feixes, que são os próprios raios catódicos. Thomson, ao estudar os raios catódicos, descobriu que estes são afetados por campos elétricos e magnéticos, e deduziu que a deflexão dos raios catódicos por estes campos são desvios de trajetória de partículas muito pequenas de carga negativa, os elétrons.

Thomson propôs que o átomo era, portanto, divisível em partículas carregadas positiva e negativamente, contrariando o modelo indivisível de átomo proposto por Dalton e por atomistas na Grécia antiga). O átomo consistiria de vários elétrons incrustados e embebidos em uma grande partícula positiva, como passas em um pudim.[32] O modelo atômico do "pudim com passas" permaneceu em voga até a descoberta do núcleo atômico por Ernest Rutherford.

 

O modelo atômico de Rutherford

Em 1911, realizando experiências de bombardeio de lâminas de ouro com partículas alfa (partículas de carga positiva, liberadas por elementos radioativos), Rutherford fez uma importante constatação: a grande maioria das partículas atravessava diretamente a lâmina, algumas sofriam pequenos desvios e outras, em número muito pequeno (uma em cem mil), sofriam grandes desvios em sentido contrário.

A partir dessas observações, Rutherford chegou às seguintes conclusões:

No átomo existem espaços vazios; a maioria das partículas o atravessava sem sofrer nenhum desvio. No centro do átomo existe um núcleo muito pequeno e denso; algumas partículas alfa colidiam com esse núcleo e voltavam, sem atravessar a lâmina. O núcleo tem carga elétrica positiva; as partículas alfa que passavam perto dele eram repelidas e, por isso, sofriam desvio em sua trajetória. Pelo modelo atômico de Rutherford, o átomo é constituído por um núcleo central, dotado de cargas elétricas positivas (prótons), envolvido por uma nuvem de cargas elétricas negativas (elétrons).

Rutherford demonstrou, ainda, que praticamente toda a massa do átomo fica concentrada na pequena região do núcleo.

Dois anos depois de Rutherford ter criado o seu modelo, o cientista dinamarquês Niels Bohr o completou, criando o que hoje é chamado modelo planetário. Para Bohr, os elétrons giravam em órbitas circulares, ao redor do núcleo. Depois desses, novos estudos foram feitos e novos modelos atômicos foram criados. O modelo que representa o átomo como tendo uma parte central chamado núcleo, contendo prótons e nêutrons, serve para explicar um grande número de observações sobre os materiais.

O modelo atômico de Niels Bohr e a mecânica quântica

O modelo atômico de Niels Bohr foi um grande avanço para a comunidade científica, provando que o átomo não era maciço. Segundo a Teoria Eletromagnética, toda carga elétrica em movimento em torno de outra, perde energia em forma de ondas eletromagnéticas. E justamente por isso tal modelo gerou certo desconforto, pois os elétrons perderiam energia em forma de ondas eletromagnéticas, confinando-se no núcleo, tornando a matéria algo instável.

Bohr, que trabalhava com Rutherford, propôs o seguinte modelo: o elétron orbitaria o núcleo em órbitas estacionárias, sem perder energia. Entre duas órbitas, temos as zonas proibidas de energia, pois só é permitido que o elétron esteja em uma delas. Ao receber um quantum, o elétron salta de órbita, não num movimento contínuo, passando pela área entre as órbitas (daí o nome zona proibida), mas simplesmente desaparecendo de uma órbita e reaparecendo com a quantidade exata de energia. Se um pacote com energia insuficiente para mandar o elétron para órbitas superiores encontrá-lo, nada ocorre. Mas se um fóton com a energia exata para que ele salte para órbitas superiores, certamente o fará, depois, devolvendo a energia absorvida em forma de ondas eletromagnéticas. 

Partículas Subatômicas

Embora o significado original do termo átomo correspondesse a uma partícula que não pode ser dividida em partículas menores, no contexto científico contemporâneo o átomo é constituído por várias partículas subatómicas: o eletrão, o protão e o neutrão. No entanto, um átomo de hidrogénio-1 não tem neutrões e um ião hidrogénio não tem eletrões.

O eletrão é a partícula com menor massa, com apenas 9,11 x10-31 kg, tendo carga elétrica negativa e uma dimensão de tal modo reduzida que não é possível a sua medição com a tecnologia atual. O protão tem carga positiva e massa 1 836 vezes maior do que a dos eletrões, de 1,6726 x 10-27 kg. O neutrão não possui carga elétrica e tem massa 1 839 vezes superior à massa do eletrão, ou 1,6929 x 10-27 kg. Neutrão e protão possuem dimensões comparáveis - na ordem de 2,5 x10-15 m - embora a superfície destas partículas não tenha contornos precisos.

No modelo padrão da física de partículas, os eletrões são partículas verdadeiramente elementares sem qualquer estrutura interna. No entanto, tanto os protões como os neutrões são partículas compostas, formadas por partículas denominadas quarks. Os protões são constituídos por dois quarks up (cada um com carga +2⁄3) e um quark down (com carga −1⁄3). Os neutrões consistem num quark up e dois quarks down. Esta diferença é responsável pelos diferentes valores de massa e carga entre as duas partículas.

Os quarks mantêm-se unidos através da força forte, mediada pelos gluões. Por outro lado, os protões e neutrões mantêm-se unidos através da força nuclear, um resíduo da força forte com propriedades diferentes. O gluão é um membro da família dos bosãos de calibre, que são partículas elementares que medeiam a forças físicas. 

Nuvem de eletrões

Os eletrões de um átomo são atraídos para os protões do núcleo através de força eletromagnética. Esta força prende os eletrões no interior de um poço de potencial eletrostático em redor do núcleo mais pequeno, o que significa que é necessária uma fonte de energia externa para o eletrão escapar. Quando mais perto está o eletrão do núcleo, maior a força de atração. Assim, os eletrões que estejam ligados mais perto do centro do poço de potencial requerem mais energia para escapar do que aqueles na periferia.

Os eletrões, tal como outras partículas, têm propriedades tanto de partícula como de onda. A nuvem de eletrões é uma região no interior do poço de potencial, na qual cada eletrão forma um tipo de onda estacionária tridimensional - uma onda que não se move em relação ao núcleo. Este comportamento é definido por uma orbital atómica, uma função matemática que caracteriza a probabilidade de um eletrão aparentar estar em determinada localização quando a sua posição é medida. Só existe um número limitado de orbitais em redor do núcleo, uma vez que outros possíveis padrões de onda rapidamente decaem para formas mais estáveis. As orbitais podem ter um ou mais anéis ou nós, e diferem entre si em termos de tamanho, forma e direção.

Cada orbital atómica corresponde a um determinado nível de energia de um eletrão. Um eletrão pode alterar o seu estado para um nível de energia superior ao absorver um fotão com energia suficiente para o impulsionar para o novo estado quântico. Da forma semelhante, através de emissão espontânea, um eletrão que se encontre num estado superior de energia pode descer para um estado inferior ao emitir a energia em excesso através de fotões. Estes valores de energia característicos, definidos pelas diferencias de energia nos estados quânticos, são responsáveis pelas linhas espectrais atómicas.

A quantidade de energia necessária para remover ou acrescentar um eletrão - a energia de ligação de eletrões – é muito inferior à energia de ligação de nucleões. Por exemplo, só são necessários 13,6 eV para remover um eletrão de um átomo de hidrogénio, em comparação com os 2.23 milhões eV para dividir um núcleo de deutério. Os átomos são eletricamente neutros quando têm um número igual de protões e eletrões. Os átomos que têm défice ou excesso de eletrões são denominados iões. Os eletrões mais afastados do núcleo podem ser transferidos para outros átomos ou partilhados entre átomos. Através deste mecanismo, os átomos são capazes de se ligar em moléculas ou outros tipos de compostos químicos como cristais iónicos ou covalentes

 

topo